Рецензия на монографию Ю.В. Матвиенко «Гидроакустические средства навигации подводных роботов. Технологии создания и применения. Владивосток: ИПМТ ДВО РАН, 2024. 320 с. DOI: 10.37102/978-5-6052787-4-0.

Из печати вышла монография известного отечественного специалиста в области гидроакустики подводных роботов, доктора технических наук Юрия Викторовича Матвиенко.

Монография обобщает труды автора, выполненные в процессе его многолетней деятельности в лидере отечественной подводной робототехники – Институте проблем морских технологий ДВО РАН – в направлении создания и эксплуатации гидроакустических средств навигации подводных роботов.

Подводная робототехника – одно из наиболее бурно развивающихся направлений изучения и освоения Мирового океана, которое немыслимо без одновременного развития средств высокоточной подводной навигации, обеспечивающей как движение подводных аппаратов по заданной траектории, так и их позиционирование относительно неподвижных и согласованно маневрирующих подводных объектов. Ввиду этого появление монографии Ю.В. Матвиенко, подробно освещающей теорию функционирования и практику использования гидроакустических систем, является своевременным.

Монография содержит 5 глав и список литературы из 152 источников.

В первой главе автор подробно рассматривает современные тенденции создания навигационных средств для подводной робототехники в направлениях повышения точности счисления пути и позиционирования робота в трёхмерном подводном пространстве. Описывается состав навигационного оборудования подводного робота, особенности его применения при решении различных задач. Акцентируется целесообразность комплексирования данных, получаемых от разных навигационных средств. Приводятся справочные данные по характеристикам и точностным показателям известных зарубежных навигационных систем с ультракороткой базой (УКБ).

Вторая глава посвящена дальномерным гидроакустическим системам, позволяющим осуществлять высокоточное позиционирование подводных аппаратов на расстояниях в десятки и сотни километров от источников подводного излучения и тем самым формировать так называемые региональные подводные навигационные системы – аналоги глобальных спутниковых навигационных систем. Описан принцип работы этих систем, алгоритмы решения навигационных задач и обеспечиваемая ими точность позиционирования.

В третьей главе рассматриваются навигационные системы с ультракороткой базой, в силу своих небольших габаритов являющиеся незаменимым средством позиционирования подводных аппаратов всех классов. Подробно описываются принцип функционирования УКБ-систем, разные конструкции УКБ-антенн, алгоритмы обработки сигналов с их выхода и обеспечиваемая ими точность определения пеленга и дистанции. Показано, что одним из направлений повышения точности УКБсистем является применение сложных широкополосных сигналов и оптимальная статистическая обработка данных с выхода элементов УКБ-антенны.

В четвёртой главе излагается опыт разработки и аттестации гидроакустических навигационных систем. Большой интерес представляет история создания гидроакустических навигационных систем в ИПМТ ДВО РАН с 1972 года по настоящее время. Показано, как когда-то разрозненные навигационные системы были постепенно объединены в навигационный комплекс подводного аппарата. Особое внимание в главе уделено технологиям аттестации навигационного оборудования в мелком и глубоком морях.

В пятой главе рассматривается организация применения АНПА, оснащённых гидроакустическими навигационными средствами, для решения различных задач. Описывается опыт: совместного использование двух и более АНПА, совершения длительного плавания АНПА большой автономности, плавания АНПА на больших глубинах.

Монографию выгодно отличает то обстоятельство, что написана она специалистом, обладающим как глубокими знаниями в теории рассматриваемых вопросов, так и большим опытом разработки и эксплуатации гидроакустических навигационных средств на реальных подводных аппаратах.

Монография ориентирована на специалистов, работающих в области подводной робототехники, но также будет интересна и полезна студентам и аспирантам кораблестроительных вузов.

Доктор технических наук, профессор А.И. Машошин